This process forms the U = A™ portion of the matrix factorization A = LU. To
determine the complementary lower triangular matrix L, first recall the multiplication of
A®x = b by the Gaussian transformation of M™ used to obtain (6.9)

ARy = MO = O =Y,
where M™ generates the row operations
(E; = myEp) = (E), forj=k+1,....n.

To reverse the effects of this transformation and return to A®) requires that the operations
(E; + mjxEy) = (E;) be performed for each j = k + 1,...,n. This is equivalent to
multiplying by the inverse of the matrix M, the matrix



L“’]‘ — [M(“]—I —

{] ,,,,,,,,, 0 mn,k [} ,,,,,,,,,, 0 ) ]

The lower-triangular matrix L in the factorization of A, then, is the product of the
matrices L®:

[ =1Mp@ . 0= _




since the product of L with the upper-triangular matrix U =M™ ... MM DA gives
LU = Llrl}LlrE} B 'L(H_E}L“E_E}Lm_” . M(H—I}M(H—E}MM—J} B .erz}erl}A
— [M{]]]—l[M{E}]—] L [M{H—E}]—I [M(H—]]]—l ) M(H—I]M{H—E} . 'M{E}M(”A — A

Theorem

[f Gaussian elimination can be performed on the linear system Ax = b without row inter-
changes, then the matrix A can be factored into the product of a lower-triangular matrix L
and an upper-triangular matrix U, that1s, A = LU, where mj; = .{1;;} Xag} :
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Example

(a) Determine the LU factorization for matrix A in the linear system Ax = b, where

l 0 3 1
A= i ) :} ; and b= _;
-1 23 -1 4
(b) Then use the factorization to solve the system
X+ 0 +3u= 8

ZI|-|- = T = 1,

Xi— 0n- n+2u= 14
X1+ 43— u=-71



Solution
(a) operations  (E, — 2E;) — (E,)
(E3 — 3E1) — (E3)
(Es — (—=DE1) — (E4)
(E3 —4Ey) — (E3)
(Ey — (=3)Ey) — (Es)
converts the system to the triangular system

x|+ x3 + 3x4= 4,
— X2 — X3— dxa= -7,
3x3+ 13x4a = 13,

— 13x4 = —13.



The multipliers m;; and the upper triangular matrix produce the factorization

LU.

1 0 3 I 0 0 0 1
i , ~1 1 2 1 0 0 0
b3 -1 -1 2 3410 0 0 3
-1 2 3 -1 | -1 =301 ][0 0 0 -I
(b) To solve
1 0 0o0]|[1 1 0 31 x |
2 1 0 0 0 -1 -1 =5 x|
A=LUX=1" 5 i 0llo o 3 B||x|"
-1 =30 1[0 0 0 =13 ][ x|

we first introduce the substitution y = Ux. Then b = L(Ux) = Ly. That 1s,

100 07w 8
2 100 || wn| | 7

D=1 s a0 n |7
-1 =30 1 [ w] | -7




This system 1s solved for y by a simple forward-substitution process:

V=8
yitn=1 soyp=T7-2y=-9
vi+dn+yvi=14, so y3=14-=3y; — 4y =26;
-y =3 +y==1, soy=-T4y + 3y, =-20.

We then solve Ux =y for x, the solution of the original system; that s,

10 3]y g
0 -1 -1 =5 {| x| | -9
000 3 By !ITh 2
0 0 0 =13 || x 26

Using backward substitution we obtamn xy = 2,x3 =0, xp = =1,x = 3.




Permutation Matrices

* The LU factorization can be applied when matrix Ais ina form that
no row interchanges are needed in the Gaussian elimination method.
« Using Permutation matrices, LU factorization method is modified

for decomposition of other matrices.
« Ann x n permutation matrix P = [p;;] i1s a matrix obtained by
rearranging the rows of I, the identity matrix.

lllustration




1 0 0 ajy dapp  ap aiy  dpp 4l
PA = 0 0 1 a1 dr»  dr — a3z dizz2 dizjz
i 0O 1 0 1L dz1 di» a4 i i ay dz2 d; |

Similarly, multiplying A on the right by P interchanges the second and third columns
of A. i

Suppose ki. - - - .k, is a permutation of the integers 1,--- | n
. ifj =k.

Pij = ‘
0. otherwise.

e PA permutes the rows of A; that is,

i1 Apy2 iyn
i, Ap,2 Alsn

PA =
| dg, 1 di,? Afpn




e P! exists and P! = P,
 For any nonsingular matrix A, a permutation matrix P exists for which

the system

PAx = FPb
can be solved without row interchanges. Therefore, the matrix PA can be

factored into
PA = LU

This produces the factorization

A=P'LU = (P'L)U



Example

Determine a factorization in the form A = (P'L)U for the matrix

Solution
The matrix A cannot have an LU factorization because a;; = 0.
Using operations,
(E1) < (E2)
(E3 + Ey) — (E3)
(Es — Ey) — (E4)

produces,



|
-

I —

1
0
0
1

]
0
0
| 0

=

Then the row interchange (E3) < (E4), followed by (Eq + E3) — (E4), gives

(-

ST O

]
]
]
0

The permutation matrix associated with the row interchanges 18

0 0
0 0
0 I
I 0

I 0
0 I
0 0
0 0




—1

0

PA = 5
—1

—_— 0 b2

]
2
-1 =1
0 0

Gaussian elimination i1s performed on PA using the same operations as on
A, except without the row interchanges. The nonzero multipliers for PA are

.’Hgl:l. HI:},IZ—].. and HI43:—1

and the LU factorization of PA is

= LU

0 0 |
0 0
PA = Lo
—1 1

e O

0
]
—1 0
0

Multiplying by P~! = P’ produces the factorization



A=P Y LU) =P (LU) = (P'L)U =

> 0 9O =
e I D b

HOMEWORK 8:
Exercise Set 6.5: 8 (parts b, d)
Special Types of Matrices

For these types of matrices Gaussian elimination can be performed

without row interchanges.

Diagonally Dominant Matrices
The n x n matrix A is said to be diagonally dominant when

H
\a;;| = Z a;;| holds foreachi=1.2,.-- ,n.

j=1.
J#Fi




A matrix is strictly diagonally dominant when

H
la;;| = Z la;j| holds foreachi=1,2,--- ,n.
i=1.
JFi
Theorem

A strictly diagonally dominant matrix A i1s nonsingular. Moreover, in
this case, Gaussian elimination can be performed on any linear system of
the form Ax = b to obtain its unique solution without row interchanges,
Proof

suppose that a nonzero solution X = (x;) to the system Ax = 0

exists. Let k& be an index for which

0 < |x| = max |x;]
1<j<n



f . .
Because Zj-:l a;jx; =0foreachi=1.2..... n. we have, wheni1 = k.

M
A Xy = — E aAjX;

=1,
JFk
From the triangle inequality we have
n n n
| | x;
|aki| x| < Z lakillxjl.  so  Ja| = Z |ﬂkj|ﬁ < Z |ax;l
j=1. =1, kLo
j7k J7Fk J7k

This nequality contradicts the strict diagonal dominance of A.
Consequently, the only solution to Ax = 0 is x = 0. This is shown

in Theorem 6.17 to be equivalent to the nonsingularity of A.



